a2 United States Patent
Oe et al.

US009348516B2

(10) Patent No.: US 9,348,516 B2
(45) Date of Patent: May 24, 2016

(54) STORAGE CONTROLLER, STORAGE
SYSTEM, METHOD OF CONTROLLING
STORAGE CONTROLLER, AND
COMPUTER-READABLE STORAGE
MEDIUM HAVING STORAGE CONTROL
PROGRAM STORED THEREIN

(71) Applicant: FUJITSU LIMITED, Kawasaki-shi,
Kanagawa (JP)

(72) Inventors: Kazuichi Oe, Yokohama (JP); Motoyuki
Kawaba, Kawasaki (JP)

(73) Assignee: FUJITSU LIMITED, Kawasaki (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 285 days.

(21) Appl. No.: 14/088,485

(22) Filed: Now. 25, 2013

(65) Prior Publication Data
US 2014/0244959 Al Aug. 28,2014

(30) Foreign Application Priority Data
Feb. 25,2013 (IP) ccecevevreececcnen 2013-034831
(51) Imt.ClL
GO6F 12/02 (2006.01)
GO6F 3/06 (2006.01)
(52) US.CL
CPCcccee. GO6F 3/061 (2013.01); GO6F 3/0649

(2013.01); GOGF 3/0685 (2013.01)
(58) Field of Classification Search
CPC GOGF 3/061; GOGF 3/0685; GOGF 3/0649
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,324,620 B1* 11/2001 Christenson GOG6F 3/061
710/74

6,941,432 B2* 9/2005 Ronstrom GO6F 12/122
711117

8,688,904 Bl* 42014 Aricccoviiine GOG6F 3/0611
711/100

2004/0260768 Al* 12/2004 Mizuno GOG6F 9/52
709/203

2010/0131733 Al 52010 Jess
2010/0274826 Al 10/2010 Takata et al.
2011/0185120 Al 7/2011 Jess
2011/0246745 Al 10/2011 Fukui etal.

2012/0246403 Al* 9/2012 McHale GOG6F 3/0604
711/114
2013/0151774 Al1* 6/2013 Bolikccccooevnen. GOG6F 3/0604
711/118

FOREIGN PATENT DOCUMENTS

JP 2010-257094 11/2010
JP 2011-154669 8/2011
JP 2011-216052 10/2011
JP 2012-509538 4/2012

* cited by examiner

Primary Examiner — Hiep Nguyen
(74) Attorney, Agent, or Firm — Fujitsu Patent Center

(57) ABSTRACT

A storage system includes: a first storage unit; a second stor-
age unit that has an access speed higher than an access speed
of' the first storage unit; and a storage controller that collects
load information about respective loads in a plurality of areas
in the first storage unit, selects a candidate area in the first
storage unit which is to be migrated, based on the collected
load information, and migrates data in the selected candidate
area, to the second storage unit.

13 Claims, 14 Drawing Sheets

START

)
OBTAIN 10 COUNT WITH THE LATEST TIMESTAMP ST
FROM DB_ON SEGHENT BASIS

{[SELECT TIERED WIGRATION CANDIDATE SEGHENT | |~—S12

LY {ife_ex_time > tiering.time ? 813

YES

SEND INFORMATION ON TIERED MIGRATION
GANDIDATE SEGMENT TO MIGRATOR. - 814
AND INSTRUCT TIERING FROM HDD TO SSD

WRITE INFORMATION ON SEGMENT T1ERED - $15
T0 SSD_INTO MIGRATION TABLE

AGAINST SEGMENT NUMBERS RECORDED

COMPARE TOP-k SEGHENT NUMBERS SELECTED
N S14 816
IN BIGRATION TABLE

{

NO_“TOP—k FOR EACH SEGHENT NUWBER s17
18 RECORDED IN MIGRATION TABLE ?
)

YES

RESET SEQUENCE NUMBER

OF SEGMENT NUMBER T0 0 | |

| INGREMENT SEQUENGE s18
NUMBER OF SEGHENT [~
NUMBER BY

SEGHENT CONTINUQUS COUNT EXCEEDS $20
gove_to_hdd, FOR EACH SEGMENT NUMBER 2.~

YES

SEND EACH SEGHENT NUMBER EXCEEDING
move_to_hdd, Aggnxuﬁggt)m WiGRATION [~ 521

(

DELETE SEGMENT NUMBERS
FROM ¥IGRATION TABLE

~ 8§22

SLEEP u SECOND |~-S23

U.S. Patent May 24, 2016 Sheet 1 of 14 US 9,348,516 B2
FIG. 1
i
2 ¢
()
TIERING MANAGER
5 LOAD DATABASE | 15
(DB)
13 .
¥ A ~—
O PR 7 14
\ MIGRATION {
DATA TABLE .
COLLECTOR WORKLOAD MIGRATOR USER 108
$ ANALYZER T
4
B {,
0S ‘
TIERING DRIVER
k:
blktrace “w»‘” TIERING L OOKUP
ootat 42 5 27| nme _i} Mépptim
—— -y
6 CACHE DRIVER -
33 32 31
o N Y
| DISK DRIVER te—l | DISK DRIVER | | DISK DRIVER |
9 {TIERING SSD{ 10! | CACHE SSD ~8 | oD 7
479) «— 1]2/3741516|7|8F91A[BIC
dd MIGRATION = -
S
SEGMENT

VOLUM

E

US 9,348,516 B2

Sheet 2 of 14

May 24, 2016

U.S. Patent

1~ HOLYHDIW |
- S o~ Tl YIZATINY QYO IIOM |
Gl m_w<m,mmw . 1~ 901031100 Viva |
e MIDYNVI ONINITL
6~ 0SS ONI¥IIL T -
oo . mm Zh - 1e1sol
Wm:,- 0ss JHOYD 1y ~{_ooeapiq |
mz%m_mmaf v e S
ﬂHwE%aHu m w Ze—- WIAIMA ¥SIQ |
bs Y e ~{ g wsia |
o g~ MIAIYQ FHOVD |
At MEL LI 6 12 [¥add o1 |
¢ g~ TIevL NoTIvEOIN | ¥IATY0 ONIN3IL
AMOWN S0
NW LG Ndd
& Dld

U.S. Patent

May 24, 2016 Sheet 3 of 14
FIG. 3
221 222 223
3 ’\, &
SSD OFFSET HDD OFFSET STATUS
0 268435456 ALLOCATED
2097152 306184192 Moving (HDD->SSD)
4194304 505413632 Mov ing (SSD->HDD)
6291456 NULL FREE

US 9,348,516 B2

-~ 22

U.S. Patent May 24, 2016 Sheet 4 of 14 US 9,348,516 B2

FiG. 4

131 132
(} () P 13
SEGMENT NUMBER | CONTINUOUS COUNT| <~

U.S. Patent May 24, 2016 Sheet 5 of 14 US 9,348,516 B2

FiG. 5

(SRt

-

4

EXECUTE biktrace COMMAND TO RUN IT S
FOR s MINUTES BEFORE BEING TERMINATED

blktrace COMMAND TERMINATED 7 > S2
YES

OBTAIN TRACE RESULT 70 GET 10 GOUNT | g3
PER OFFSET ON SEGMENT BASIS

N
WRITE RESULTANT 10 COUNT FOR EAGH SEGMENT{ g4
INTO DB TOGETHER WITH TIMESTAMP

SLEEP t SECONDS |~- S5

U.S. Patent

May 24, 2016 Sheet 6 of 14

FiG. ©
(STRT)

N e eseeemmneee

US 9,348,516 B2

OBTAIN 10 COUNT WITH THE LATEST TIMESTAMP . S11

FROM DB ON SEGMENT BASIS

!

| | SELECT TIERED MIGRATION CANDIDATE SEGMENT | |--S12

NO v

ife ex time > tiering time ? :>--S13

YES

CANDIDATE SEGMENT TO MIGRATOR
AND INSTRUCT TIERING FROM HDD TO

SEND INFORMATION ON TIERED MIGRATION

sSp ~-S14

o

TO SSD INTO MIGRATION TABLE

WRITE INFORMATION ON SEGMENT TIERED - S15

319

}
{

IN MIGRATION TABLE

COMPARE TOP-k SEGMENT NUMBERS SELECTED
IN S14 AGAINST SEGMENT NUMBERS RECORDED |-~ S16

¥

NO ~“TOP-k FOR EACH SEGMENT NUMBER
RECORDED IN MIGRATION TABLE ?

YES

OF SEGMENT NUMBER TC O NUMBER BY 1

NUMBER OF SEGMENT

~ 17

//‘

RESET SEQUENCE NUMBER INCREMENT SEQUENGE | g

NO .~ SEGMENT CONTINUOUS COUNT EXCEEDS

move_to_hdd, FOR EACH SEGMENT NUMBER \?>*~ S20

YES

(SSD—HDD)

SEND EACH SEGMENT NUMBER EXCEEDING
move_to_hdd, AND INSTRUCT MIGRATION i~ S21

!

DELETE SEGMENT NUMBERS
FROM MIGRATION TABLE

=

| SLEEP u SECOND |~ S23
|

~- 822

U.S. Patent May 24, 2016 Sheet 7 of 14 US 9,348,516 B2

SORT 10 COUNTS FOR EACH SEGMENT
IN DESCENDING ORDER TO OBTAIN seg sort(k), ...
seg_sort(k) IS 10 COUNT OF SEGMENT S
THAT HAS K-TH MOST ACCESSES

74

m
io_concentration = Zseg sortk) | S194
S127 =
) io_rate = (io_concentrationx100)/io_all
m=m+ 1 ’
m REAGHES max_seg num ?
° R ~§125
\\\\ io_rate EXCEEDS io_rate_value ?
YES

m REACHES max_seg _num ? :>“\¢S126
YES

RECORD COUNT INDICATING HOW MANY TIMES
CORRESPONDING SEGMENT NUMBER HAS HIT TOP-k RANKING —
(io_rate_value FOR ENTIRE 10)

)

SUM 10 COUNTS FOR ALL SEGMENTS TO OBTAIN io_all ~-S123

5128

EXCLUDE SEGMENTS THAT WAS IN TOP-k RANKING IN PREVIOUS
TIME SLICE BUT FELL OUT OF TOP-k RANKING IN CURRENT TIME SLICE

- 3129

SELECTS SEGMENT WITH CONTINUQOUS COUNT IN S128 EXCEEDING
min_cont_time, AS TIERED MIGRATION CANDIDATE SEGMENT

7

~—5130

CALCULATE tiering_time = seg_move_time * n + DETECTED DELAY
n: COUNT OF SEGMENTS SELECTED AS TIERED MIGRATION CANDIDATE

. $131

PR
(0)

U.S. Patent

May 24, 2016 Sheet 8 of 14

FiG. 8

SRR
(STRT)

US 9,348,516 B2

WAIT UNTIL TIERED MIGRATION INSTRUCTION
1S RECEIVED FROM WORK LOAD ANALYZER

. S31

NO

YES

7

TIERED MIGRATION INSTRUCTION RECEIVED ? >—— S32

CONVERTS SEGMENT NUMBER IN TIERED MIGRATION
INSTRUCTION TO OFFSET IN DEVICE
EX: FOR 512-BYTES/SECTOR
AND SIZE OF SEGMENT IS 1 GB,
CALCULATE 1 * 1024 * 1024 * 1024/512

833

!

NOTIFIES TIERING DRIVER OF:
~ OFFSET FOR SEGMENT NUMBER (LBA IN HDD)

- MIGRATION DIRECTION (HDD—SSD, SSD—HDD)

. $34

U.S. Patent May 24, 2016 Sheet 9 of 14

FlG. @

(_STRT_)

US 9,348,516 B2

IS RECEIVED FROM MIGRATOR

WAIT UNTIL TIERED MIGRATION INSTRUCTION | o41

N INSTRUCTION RECEIVED 7
YES

NO /" TIERED MIGRATION yvs42
4

SEARCH TIERING TABLE FOR ANY ENTRY
WITH CACHE OFFSET OF NULL

-S43

REGISTER CACHE OFFSET AND STATUS
(MOVING (HDD—SSD OR SSD—HDD))
IN TIERING TABLE

. 544

INSTRUGT TIERING SSD AND
CACHE TO MIGRATE SEGMENT

~- S45

U.S. Patent

May 24, 2016 Sheet 10 of 14 US 9,348,516 B2
FIG. 10
(" START)

WAITS UNTIL MIGRATION OF SEGMENT 351
BETWEEN TIERING SSD AND CACHE IS COMPLETED [

NO

MIGRATION COMPLETED REPORT RECEIVED 7>~ S52
YES

SEARCH TIERING TABLE FOR ENTRY, .S53
MIGRATION OF WHICH HAS BEEN COMPLETED -

----------------------- NO_(STATUS 15 “WOVING (HDD—s5D)” 7 >~ S54
$56 YES
! ¥ :
CHANGE STATUS TO “FREE” CHANGE STATUS TO “ALLOCATED” |- S99
AND SETS HDD OFFSET T0 NULL

U.S. Patent May 24, 2016 Sheet 11 of 14

FlG. 11

(_START_)

S

WAIT UNTIL USER 10 IS RECEIVED

NO

YES

US 9,348,516 B2

~— 561

USER 10 RECEIVED ? :>-’S62

SEARCH FOR ENTRY IN TIERING TABLE HAVING OFFSETS
+ SEGMENTS WHICH ARE SAME AS OFFSET IN USER 10. |~ S63

IF ANY, CHECKS ITS STATUS

566

NO .

MATCHING OFFSET 1S FOUND

AND [TS STATUS IS "APPLICATED” ? \ﬁ>' 564

SEND USER 10
10 CACHE

YES

SEND USER 10 TO TIERING SSD

- $65

U.S. Patent May 24, 2016 Sheet 12 of 14 US 9,348,516 B2

FiG. 12

3000

e NS-DST
2500 /‘&\@/% ~—&— fo 25¢ P

2000

1500

jops

1000

‘1
\
:
i
\l
500 L

12 14 16 18 20 22 24 26 28 30
ELAPSED TIME (min)

2 4 6 8 10

U.S. Patent May 24, 2016 Sheet 13 of 14 US 9,348,516 B2

FiG. 13

VOLUME Ao A
OFFSET « :

~
1
1
i
i
1
1
H
H

ELAPSED TIME

U.S. Patent May 24, 2016 Sheet 14 of 14 US 9,348,516 B2

FiG. 14

20

AVERAGE LIFE EXPECTANCY (min)

EXECUTION TIME (min)

US 9,348,516 B2

1

STORAGE CONTROLLER, STORAGE
SYSTEM, METHOD OF CONTROLLING
STORAGE CONTROLLER, AND
COMPUTER-READABLE STORAGE
MEDIUM HAVING STORAGE CONTROL
PROGRAM STORED THEREIN

CROSS-REFERENCE TO RELATED
APPLICATION

This application is based upon and claims the benefit of
priority of the prior Japanese Patent Application No. 2013-
034831, filed on Feb. 25, 2013, the entire contents of which
are incorporated herein by reference.

FIELD

The present disclosure relates to a storage controller, stor-
age system, method of controlling a storage controller, and a
computer-readable storage medium having a storage control
program stored therein.

BACKGROUND

For example, load analyses of tiered storage systems
including hard disk drives (HDDs) and solid state drives
(SSDs) have revealed that nomadic work load spikes emerge
in some of the tiered storage systems.

As used herein, the term “spike” refers to the situation
where work loads (also known as loads) emerge intensively
on a limited area in a storage. The term “nomadic work load
spike” refers to a situation where such spikes occurs inten-
sively for a relatively shorter time (e.g., about one to 10
minutes), and then spikes emerge in a different location (off-
set).

An example of nomadic work load spikes is illustrated in
FIG. 13.

In FIG. 13, the horizontal axis represents offsets in the
volume in a storage, while the vertical axis represents elapsed
time.

The black bars in FIG. 13 represent 1-GB segments where
work loads inventively emerge in the storage volume. Here,
the term “segment” refers to fixed-size area in the storage
volume. For example, a 1-GB segment is 1-GB area in the
volume in the storage.

At the time of the arrow A in FIG. 13, ten or less segments
are hit by spikes simultaneously. The arrows B and C in FIG.
13 indicate segments where work loads last.

For eliminating such work loads, in addition to HDDs,
tiered storage systems are provided with an SSD as a cache,
for achieving both performance improvement and cost effi-
ciency. The scheme where an SSD is employed as a cache is
referred to as the SSD cache scheme.

Examples of SSD caches include Facebook flush caches
and Fusion Direct caches.

Unfortunately, such an SSD cache scheme employs the
writeback of the cache. Hence, the SSD cache scheme may
cause a problem upon migrating nomadic work load spikes
with higher write ratios.

Specifically, once all SSD cache blocks have been con-
sumed, for allocating a new spike and cache block, some
cache blocks need to be cleaned. For nomadic work load
spikes with higher write ratios, a significant amount of write-
back to HDDs occurs.

Typical SSD cache blocks have smaller sizes, e.g., 4 kilo-
bytes (KB), and hence a writeback causes a random access to
the HDD, which leads to a significant delay.

10

15

20

25

30

35

40

45

50

55

60

65

2

Additionally, in the writeback cache scheme, once all
cache areas are exhausted, a writeback of a dirty block (a
block in the SSD the content, data in which does not match the
content in the corresponding block in the HDD) occurs fre-
quently. While nomadic work load spikes with higher write
ratios are executed, writeback of dirty blocks frequently
occurs, which consumes significant areas that can be used by
the user.

For the reasons set forth above, applying an cache SDD to
work loads experiencing nomadic work load spikes with
higher write ratios is often not so effective as expected.

SUMMARY

Hence, a storage controller that controls a first storage unit
and a second storage unit that has an access speed higher than
an access speed of the first storage unit, the storage controller
comprising: a collector that collects load information about
respective loads in a plurality of areas in the first storage unit;
a selector that selects a candidate area in the first storage unit
which is to be migrated, based on the load information col-
lected by the collector; and a migrator that migrates data in the
selected candidate area, to the second storage unit.

Additionally, a storage system includes: a first storage unit;
a second storage unit that has an access speed higher than an
access speed of the first storage unit; and a storage controller
that collects load information about respective loads in a
plurality of areas in the first storage unit, selects a candidate
area in the first storage unit which is to be migrated, based on
the collected load information, and migrates data in the
selected candidate area, to the second storage unit.

Furthermore, a method of controlling a storage controller
that controls a first storage unit and a second storage unit that
has an access speed higher than an access speed of the first
storage unit, the method includes, by the storage controller:
collecting load information about respective loads in a plu-
rality of areas in the first storage unit; selecting a candidate
area in the first storage unit which is to be migrated, based on
the collected load information; and migrating data in the
selected candidate area, to the second storage unit.

Furthermore, a computer readable recording medium hav-
ing stored therein, a control program for controlling a storage
controller that controls a first storage unit and a second stor-
age unit that has an access speed higher than an access speed
of the first storage unit, the control program causing the
storage controller to: collect load information about respec-
tive loads in a plurality of areas in the first storage unit; select
a candidate area in the first storage unit which is to be
migrated, based on the collected load information; and
migrate data in the selected candidate area, to the second
storage unit.

The object and advantages of the invention will be realized
and attained by means of the elements and combinations
particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory only and are not restrictive of the inven-
tion.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic diagram illustrating a system con-
figuration of a tiering storage system as an example of an
embodiment;

FIG. 2 is a schematic diagram illustrating functional and
hardware configurations of the tiering storage system as an
example of an embodiment;

FIG. 3 is adiagram illustrating an example of a tiering table
used in the tiered storage system as one example of an
embodiment;

US 9,348,516 B2

3

FIG. 41is a diagram illustrating an example of a tiering table
used in the tiered storage system as one example of an
embodiment;

FIG. 5 is a flow chart illustrating a data collection by a data
collector in the tiered storage system as an example of an
embodiment;

FIG. 6 is a flow chart summering a migration by a work
load analyzer and a migrator in the tiered storage system as an
example of an embodiment;

FIG. 7 is a flow chart illustrating an extraction of a migra-
tion candidate segment by the work load analyzer depicted in
FIG. 6;

FIG. 8 is a flow chart illustrating a migration of a segment
by the migrator in the tiered storage system as an example of
an embodiment;

FIG. 9 is a flow chart illustrating processing by a tiering
driver in the tiered storage system as an example of an
embodiment, after the segment is migrated;

FIG. 10 is a flow chart illustrating a migration of a segment
by thetiering driver in the tiered storage system as an example
of an embodiment;

FIG. 11 is a flow chart illustrating processing of a user 10
by thetiering driver in the tiered storage system as an example
of an embodiment;

FIG. 12 is a graph comparing the tiered storage system as
an example of an embodiment against a conventional tiered
storage system,

FIG. 13 is a graph illustrating an example of nomadic work
load spikes; and

FIG. 14 is a graph illustrating an example of average life
expectancies of work loads.

DESCRIPTION OF EMBODIMENTS

Hereunder is a description of an embodiment in accor-
dance with the disclosed technique with reference to the
drawings.

(A) Configuration

Hereinafter, a configuration of a tiering storage system
(storage system) 1 as an example of an embodiment will be
described with reference to FIGS. 1 to 4.

FIG. 1 is a schematic diagram illustrating a system con-
figuration of the tiering storage system as an example of an
embodiment. FIG. 2 is a schematic diagram illustrating func-
tional and hardware configurations of the tiering storage sys-
tem 1 as an example of an embodiment.

The tiered storage system 1 includes an information pro-
cessing apparatus 2, a HDD (first storage unit) 7, a cache SSD
(third storage unit) 8, and a tiering SSD (second storage unit)
9.

The information processing apparatus 2 is a computer hav-
ing a server function, for example, and sends and receives a
wide variety of types of data, such as SCSI commands and
responses, from and to the HDD 7 and the cache SSD 8, which
will be described later, using a storage connection protocol.
The information processing apparatus 2 writes and reads data
to and from storage areas provided by the HDD 7 and the
cache SSD 8, by sending disk access commands, such as read
and write commands, to the HDD 7 and the cache SSD 8.

The HDD 7 is a storage drive including disks having mag-
netic materials applied thereon, as a recording medium,
wherein, by moving a magnetic head, information is read and
written from and to the disks rotating at a high speed.

The cache SSD 8 is a storage drive including a semicon-
ductor memory as a recording medium, and is also referred to

10

15

20

25

30

35

40

45

50

55

60

65

4

as a silicon disk drive or a semiconductor disk drive. Gener-
ally, the cache SSD 8 enables faster random accesses than
those of the HDD 7, since the cache SSD 8 does not take head
seek time for moving the magnetic head, unlike the HDD 7.
The cache SSD 8 is more expensive than the HDD 7 since it
has a semiconductor memory device.

In the present embodiment, the HDD 7 and the cache SSD
8 behave as a single disk. Specifically, pieces of data in the
HDD 7, which are frequently accessed by the tiered storage
apparatus 1, are placed in the cache SSD 8 having a higher
access speed. In other words, the cache SSD 8 is used as a
cache of the HDD 7. For this reason, thereinafter, the HDD 7
and the cache SSD 8 are collectively referred to as a flush
cache 10, or simply as a cache 10. Alternatively, the HDD 7
and the cache SSD 8 can be reckoned as a single HDD 10, and
may be referred to as a HDD 10.

Note that techniques for using the cache SSD 8 as a cache
of'the HDD 7 are well known in the art, and thus the descrip-
tions therefor are omitted there.

The tiering SSD 9 is a storage drive including a semicon-
ductor memory as a recording medium, and is also referred to
as a silicon disk drive or a semiconductor disk drive. Gener-
ally, the tiering SSD 9 enables faster random accesses than
those of the HDD 7, since the tiering SSD 9 does not take head
seek time for moving the magnetic head, unlike the HDD 7.
The tiering SSD 9 is more expensive than the HDD 7 since it
has a semiconductor memory device.

As depicted in FIG. 2, the information processing appara-
tus 2 includes a central processing unit (CPU) 51, a memory
52, an internal disk 53, an input/output (1/O) interface 54, and
a media reader 55, for example.

The CPU 51 runs an operating system (OS) 4, which is
system software for providing basic functions of the informa-
tion processing apparatus 2. The CPU 51 executes various
types of processing by running programs stored in the
memory S52.

The memory 52 stores various kinds of programs and data
executed by the CPU 51, and data generated during the opera-
tion of the CPU 51. The memory 52 also functions as a storing
unit that stores a migration table 13 and a tiering table 22,
which will be described later. The memory 52 may be any of
a wide variety of known memory devices, such as a random
access memory, a read only memory (ROM), a non-volatile
memory, and a volatile memory. Further, the memory 52 may
include multiple types of memory devices.

The internal disk 53 is a disk drive providing an storage
area internal to the information processing apparatus 2, and
stores the OS 4 and a wide variety of programs to be executed
by the information processing apparatus 2, for example. The
internal disk 53 is a HDD, for example. The internal disk 53
also functions as a storage unit that stores a load database
(DB, dataset) 15, which will be described later.

The I/O interface 54 is an adaptor that connects the infor-
mation processing apparatus 2, the HDD 7, the cache SSD 8,
and the tiering SSD 9. The 1/O interface 54 is a disk interface
compliant with the Serial Advanced Technology Attachment
(SATA), Small Computer System Interface (SCSI), Serial
Attached SCSI (SAS), or Fibre Channel (FC) standard, for
example.

The media reader 55 is a drive for a reading a recording
medium 56, such as CD-ROMs and DVD-ROMs, and is a
CD-ROM or DVD-ROM drive, for example.

The CPU 51 runs the OS 4.

The OS 4 is system software that implements basic func-
tions, such as hardware managements for the information
processing apparatus 2. The OS 4 is Linux®, for example.

US 9,348,516 B2

5

The OS 4 includes a tiering driver 5, a cache driver 6, disk
drivers 31 to 33, the blktrace command 41, and the iostat
command 42.

The disk driver 31 is a device driver that controls the
hardware of the HDD 7.

The disk driver 32 is a device driver that controls the
hardware of the cache SSD 8.

The disk driver 33 is a device driver that controls the
hardware of the tiering SSD 9.

The cache driver 6 is also referred to as a flush cache driver,
and controls the disk driver 31 and the disk driver 32 for
embodying the cache system of the flush cache 10 defined by
the HDD 7 and the cache SSD 8.

The tiering driver 5 controls data migration (transfer)
between the flush cache 10 defined by the HDD 7 and the
cache SSD 8, and the tiering SSD 9, in a unit of segments, as
will be described later.

As depicted in FIG. 1, the tiering driver 5 includes an 10
mapper 21 and a tiering table 22.

The IO mapper 21 instructs data migration (transfer) in a
unit of segments, to the cache driver 6 and the disk driver 33
by looking up the tiering table 22, which will be described
later.

The tiering table 22 is a table describing the relationship
between the flush cache (HDD) 10 and the tiering SSD 9.

FIG. 3 is a diagram illustrating an example of a tiering table
22 used in the tiered storage system 1 as one example of an
embodiment.

Inthe example depicted in FIG. 3, the tiering table 22 stores
SSD offsets 221, and related offsets 222 in the HDD 10 and
statuses 223.

Each SSD offset 221 indicates the location of a segment
data, data in which has been migrated to the tiering SSD 9, as
the offset for that segment in the tiering SSD 9. For example,
the offset may be a logical block address (LBA) of that seg-
ment in the tiering SSD 9.

Each HDD offset 222 indicates the original location of a
segment in the flush cache 10, data, data in which has been
migrated to the tiering SSD 9 indicated by the SSD offset 221,
as the offset for that segment in the flush cache 10. For
example, the offset may be a logical block address (LBA) of
that segment in the flush cache 10. Here, the flush cache 10 is
reckoned as a single HDD 10, and an offset in the flush cache
10 is referred to as an “offset in the HDD 10

Each status 223 stores information indicating the status of
a segment data of which has been migrated to the tiering SSD
9, indicated by the SSD offset 221. The status 223 takes one
of'the following values: “Free” indicating that the tiering SSD
9 has free space; “Allocated” indicating that an area is allo-
cated for the tiering SSD 9 but data is not migrated yet; and
“Moving” indicating that data has been migrated between the
HDD 10 and the tiering SSD 9. The “Moving” has two values:
“Moving (HDD—SSD)” indicating that the data has been
migrated from the HDD 10 to the tiering SSD 9, and “Moving
(SSD—HDD)” indicating that the data has been migrated
vise versa.

The blktrace command 41 depicted in FIGS. 1 and 2 is used
to trace the block 10 layer. The blktrace command 41 traces
the statuses of an IO request in the entry and exit of a block IO
layer, and inside the block IO layer. The product of the trace
is an 1O trace.

The data collector 11, which will be described later,
executes the blktrace command periodically (e.g., at one
minute interval), and accumulates an IO trace in a load data-
base 15.

For example, on the Linux OS, the data collector 11 mea-
sures, for each fixed-size section in the storage volume (here-

10

15

20

25

30

35

40

45

50

55

60

65

6

inafter, such a section will be referred as a segment), the
following: 1) the IO count; 2) the ratio per 1O size; 3) the ratio
of read/write; and 4) the histogram of responses, and stores
the results in the load database 15.

The iostat command 42 is used to obtain 1O statistics infor-
mation, and the option “~x” provides information, including
the busy ratio for each disk (% util, % util of near 100 indi-
cates that the disk is approaching its performance limit).

% util indicates that ratio of the current performance of a
disk to the peak performance.

The CPU 51 (refer to FIG. 2) in the tiered storage controller
1 functions as a tiering manager (tiered storage controller) 3,
by executing a program (not illustrated).

The tiering manager 3 identifies segments hit by nomadic
work load spike(s), i.e., segments where work loads have
relatively longer duration time (e.g., three minutes or longer),
in the flush cache 10 defined by the HDD 7 and the cache SSD
8, in real time. The tiering manager 3 then instructs migration
of the identified segments (more precisely, data stored in
those segments) from the HDD 10 to the tiering SSD 9.

The tiering manager 3 includes a data collector (collector)
11, a work load analyzer (analyzer) 12, and a migrator 14.

The data collector 11 executes the blktrace command 41
periodically in a predetermined interval to collect statistics of
each segment, such as 10 counts, in real time, and stores the
collected statistics in the load database (load information) 15.

As an example, the flush cache 10 has a 4.4-tera byte (TB)
capacity, the segment size is 1 GB, and the predetermined
interval (time slice) is one minute. In this case, the data
collector 11 collects IO counts for 4400 segments every
minute, and stores the results in the load database 15.

Note that particular operations by the data collector 11 will
be described later with reference to FIG. 5.

The work load analyzer 12 identifies segments hit by
nomadic work load spike(s), based on data in the load data-
base 15 collected by the data collector 11.

Here, the work load analyzer 12 detects work loads that
have relatively longer duration time, as nomadic work load
spikes. The work load analyzer 12 uses average life expect-
ancies of work loads, as their duration time, for identifying
nomadic work load spikes. As used herein, the term “average
life expectancy” is a duration time of a work load minus the
lapse time of that work load.

Specifically, a system administrator may collect duration
time of nomadic work load spikes (work loads) in the tiered
storage system 1 in advance, and the duration time of the
nomadic work load spikes is calculated from the collected
duration time using a known calculation technique. Note that
techniques for calculating average life expectancies are well
known and the description therefor will be omitted.

Referring to FIG. 14, an example of average life expectan-
cies will be described.

FIG. 14 is a graph illustrating an example of average life
expectancies of work loads.

In this figure, the average life expectancies of eight work
loads (projl, proj2, . . .) are calculated.

The horizontal axis represents the execution time (duration
time) of each work load, while the vertical axis represents the
life expectancy of the work load at the execution time.

For example, in the case of proj4, FIG. 14 indicates that the
work load may last ten minutes when the work load continues
for three minutes.

In this manner, the work load analyzer 12 identifies such a
work load as a nomadic load spike, and speculatively
migrates the nomadic work load spike to the tiering SSD 9,
based on the average life expectancy of each work load.

US 9,348,516 B2

7

In the example of proj4 in FIG. 14, if a nomadic work load
spike lasting for three minutes is identified, it is expected that
this nomadic work load spike may last for another 10 minutes.

The work load analyzer 12 compares the 10 minutes
against the cost (time) for tiered migration (staging) of that
nomadic work load spike (i.e., the sum of detection overhead
and the stating time), and executes a tiered migration if the 10
minutes are more costly.

In other words, in response to detecting a nomadic work
load spike that last for a certain time (e.g., three minutes), as
indicated by Formula (3) described later, the work load ana-
lyzer 12 determines the cost (time) for a tiered migration
based on the segment count, and compares that cost (time)
against the average life expectancy depicted in FIG. 14.

When the work load analyzer 12 determines that the aver-
age life expectancy exceeds the cost (time) for a tiered migra-
tion, the work load analyzer 12 selects that segment hit by that
nomadic work load spike as a candidate segment (hereinafter,
such a segment is referred to as a migration candidate seg-
ment or tiered migration candidate segment). The work load
analyzer 12 then writes details of the candidate segment to be
migrated, into a migration table 13.

Here, an example of the migration table 13 is depicted in
FIG. 4. The migration table 13 includes segment numbers 131
and continuous counts 132, as depicted in FIG. 4.

Each segment number 131 indicates a number of a segment
which is determined to be migrated to the tiering SSD 9.

Each continuous count 132 indicates how many times the
segment has been determined continuously that segment is hit
by a nomadic work load spike.

If the count that the segment which has been staged the
tiering SSD 9 is not determined continuously that that seg-
ment is hit by a nomadic work load spike is less than a certain
time out value, the work load analyzer 12 instructs a write-
back of that segment from the tiering SSD 9 to the flush cache
10.

The detailed operations of the work load analyzer 12 will
be described with reference to FIGS. 6 and 7.

The migrator 14 instructs the tiering driver 5 to migrate a
segment from the tiering SSD 9 to the flush cache 10, or vise
versa, based on an instruction from the work load analyzer 12.

The detailed operations of the migrator 14 will be
described with reference to FIG. 8.

Note that, in the embodiment set forth above, the CPU 51
in the information processing apparatus 2 functions as the
tiering manager 3, the data collector 11, the work load ana-
lyzer 12, and the migrator 14 in FIGS. 1 and 2, by executing
a storage control program.

Note that the program (storage control program) for imple-
menting the functions as the tiering manager 3, the data
collector 11, the work load analyzer 12, and the migrator 14
are provided in the form of programs recorded on a computer
read able recording medium, such as, for example, a flexible
disk, a CD (e.g., CD-ROM, CD-R, CD-RW), a DVD (e.g.,
DVD-ROM, DVD-RAM, DVD-R, DVD+R, DVD-RW,
DVD+RW, HD-DVD), a Blu Ray disk, a magnetic disk, an
optical disk, a magneto-optical disk, or the like. The computer
then reads a program from that storage medium 56 and uses
that program after transferring it to the internal storage appa-
ratus or external storage apparatus or the like. Alternatively,
the program may be recoded on a storage unit (storage
medium 56), for example, a magnetic disk, an optical disk, a
magneto-optical disk, or the like, and the program may be
provided from the storage unit to the computer through a
communication path.

Upon embodying the functions as the tiering manager 3,
the data collector 11, the work load analyzer 12, and the

10

15

20

25

30

35

40

45

50

55

60

65

8

migrator 14, programs stored in internal storage apparatuses
(the memory 25 in the information processing apparatus 2)
are executed by a microprocessor of the computer (the CPU
51 in the information processing apparatus 2 in this embodi-
ment). In this case, the computer may alternatively read a
program stored in the storage medium 56 via the media reader
55 for executing it.

Note that, in this embodiment, the term “computer” may be
a concept including hardware and an operating system, and
may refer to hardware that operates under the control of the
operating system, for example. Alternatively, when an appli-
cation program alone can make the hardware to be operated
without requiring an operating system, the hardware itself
may represent a computer. The hardware includes at least a
microprocessor, e.g., CPU, and a means for reading a com-
puter program recorded on a storage medium 56 and, in this
embodiment, the information processing apparatus 2
includes a function as a computer.

(B) Functions and Operations

Hereinafter, the functions and the operations of the tiering
storage system 1 as an example of an embodiment will be
described with reference to the drawings.

Now referring to FIG. 5, operations by the data collector 11
will be described.

FIG. 5 is a flow chart (Steps S 1 to S 5) illustrating a data
collection by the data collector 11 in the tiered storage system
1 as an example of an embodiment.

In Step S 1, the data collector 11 initiates the blktrace
command 41, specifying the condition in that the blktrace
command 41 is executed for “s” seconds (e.g., 60 seconds).

Then in Step S 2, the data collector 11 determines whether
“s” seconds elapses and the blktrace command 41 is termi-
nated.

If the blktrace command 41 is not terminated (refer to the
NO route from Step S 2), the flow returns to Step S 2.

Otherwise, if the blktrace command 41 is terminated (refer
to the YES route from Step S 2), in Step S 3, the data collector
11 checks the trace result obtained through the blktrace com-
mand 41 and determines the IO count for each offset in a unit
of fixed-size segment (e.g., in a unit of 1-GB segment).

Then in Step S 4, the data collector 11 writes the 1O counts
determined in Step S 3 into the load database 15, together
with the current time stamp.

Finally in Step S 5, after sleeping for “t” seconds (e.g., 60
seconds), the data collector 11 returns to Step S 1.

Next, referring to FIGS. 6 and 7, operations by the work
load analyzer 12 and the migrator 14 will be described.

FIG. 6 is a flow chart (Steps S 11 to S 23) summering a
migration by the work load analyzer 12 and the migrator 14 in
the tiered storage system 1 as an example of an embodiment.
FIG. 7 is a flow chart (Steps S 121 to S 131) illustrating an
extraction of a migration candidate segment by the work load
analyzer 12 depicted in FIG. 6.

Firstly in Step S 11 in FIG. 6, the work load analyzer 12
obtains the 10 counts with the latest time stamp for each
segment from the load database 15.

Next, in Step S 12, the work load analyzer 12 identifies
tiered migration candidate segment(s). How the segment is
obtained will now be described with reference made to FIG.
7.

Firstly, in Step S 121 in FIG. 7, the work load analyzer 12
sets a variable m to its initial value of 1. The variable m is used
to determine the count of segments which reaches the thresh-
0ld 10 rate for determining as a spike (io_rate_value).

US 9,348,516 B2

9

Next, in Step S 122, the work load analyzer 12 sorts the 1O
counts for each segment obtained in Step S 11 in FIG. 6 in the
descending order to obtain an array seg sort (1),
seg_sort (2), ..., seg_sort (k), Here, seg_sort (k) is the
10 count of the segment that has the k-th most accesses.

Next, in Step S 123, the work load analyzer 12 sums the 1O
counts for all segments to obtain io_all. Specifically, io_all is
the total 1O count at the time slice in interest.

Next, in Step S 124, the work load analyzer 12 executes
calculations for seg sort (1), seg sort (2), . . . ,
seg_sort (k), . . ., using the following Egs. (1) and (2):

)) n (65)]
i0_concentration= Z seg_sort(k)
k=1

io_rate = (io_concentrationx 100)/io_all

@

In Step S 125, the work load analyzer 12 determines
whether m reaches the maximum segment count allowed for
simultaneous tiering (max_seg num), or whether io_rate
exceeds the IO rate threshold for determining as a spike
(io_rate_value).

If m reaches max_seg_num, or io_rate exceeds io_rat-
e_value (refer to the YES route from Step S 125), in Step S
126, the work load analyzer 12 determines whether m reaches
max_seg_num.

If m reaches max_seg_num (refer to the YES route from
Step S 126), in Step S 128, the work load analyzer 12 records
the count indicating how many times the corresponding seg-
ment number has hit the top-k ranking (io_rate_value for the
entire [0s (%)).

Next, in Step S 129, the work load analyzer 12 excludes
segments that was in the top-k ranking in the previous time
slice but fell out of the top-k ranking in the current time slice.

In Step S 130, the work load analyzer 12 selects the seg-
ments of which continuous counts determined in Step S 128
exceeds min_cont_time, as tiered migration candidate seg-
ments. Here, min_cont_time is a threshold for selecting tiered
migration candidate segments, and when a spike in a segment
lasts exceeding this threshold, the segment is selected as a
tiering migration candidate segment.

In Step S 131, the work load analyzer 12 calculates tier-
ing_time for n segments selected as tiering migration candi-
dates as follows:

tiering time=seg _move_time*s+detected delay

3

In the above Eq. (3), seg_move_time is the value (in sec-
onds) representing the cost (time) of migrating a single seg-
ment from the HDD 10 to the tiering SSD 9, and is 10 seconds,
for example. The detected delay is a delay time (in seconds)
for migrating a segment.

If m does not reach max_seg_num and io_rate does not
exceed io_rate_value (refer to the NO routes from Step S 125
and S 126), in Step S 127, m is incremented by one (+1).
Thereafter, the flow returns to Step S 122.

Referring back to FIG. 6, in Step S 13, the work load
analyzer 12 determines whether the average life expectancy
of the spike (life_ex_time) exceeds tiering_time. Here, the
value of life_ex_time varies for each work load, and is deter-
mined and set in the information processing apparatus 2 in
advance, by a system administrator, for example.

If life_ex_time exceeds tiering_time (refer to the YES
route from Step S 13), in Step S 14, the work load analyzer 12
instructs the migrator 14 to migrate data in the tiered migra-
tion candidate segments, from the HDD 10 to the tiering SSD

10

15

20

25

30

35

40

45

50

55

60

65

10

9. In response, the migrator 14 migrates data in the instructed
tiered migration candidate segments from the HDD 10 to the
tiering SSD 9.

Then in Step S 15, the work load analyzer 12 records
information about the segments migrated to the tiering SSD 9,
into the migration table 13 in the work load analyzer 12.

Otherwise, if life_ex_time does not exceed tiering_time in
Step S 13 (refer to the NO route from Step S 13), the flow
moves to Step S 16.

Next, in Step S 16, the work load analyzer 12 compares the
segment numbers of the segments ranked within top k in Step
S 12 against segment numbers recorded in the migration table
13.

Next, in Step S 17, the work load analyzer 12 determines
whether, for each segment number recorded in the migration
table 13, that segment is in the top-k ranking.

Ifthe segment is in the top-k ranking (refer to the YES route
from Step S 17), in Step S 18, the work load analyzer 12
increments the segment continuous count for that segment by
one.

Otherwise, if the segment is not in the top-k ranking (refer
to the NO route from Step S 17), in Step S 19, the work load
analyzer 12 resets the segment continuous count to ‘0.

Next, in Step S 20, the work load analyzer 12 determines
whether the segment continuous count exceeds move_
to_hdd, for each segment number recorded in the migration
table 13. Note that move_to_hdd is a threshold for selecting a
segment for moving back from the tiering SSD 9 to the HDD
10, and a segment is determined to be moved back if that
segment is out of the top-k ranking.

If the segment continuous count exceeds move_to_hdd
(refer to the YES route from Step S 20), in Step S 21, the work
load analyzer 12 instructs the migrator 14 to migrate each
segment number exceeding move_to_hdd, from the tiering
SSD 9 to the HDD 7.

Then in Step S 22, the work load analyzer 12 deletes the
segment numbers from the migration table 13.

Otherwise, if the segment continuous count does not
exceed move_to_hdd (refer to the NO route from Step S 20),
the flow returns to Step S 23.

Next in Step S 23, after sleeping u seconds (e.g., 60 sec-
onds), the work load analyzer 12 returns to Step S 11.

The thresholds used in the flows in FIGS. 6 and 7 (e.g.,
max_seg num, io_rate_value, min_cont_time, seg_
move_time, life_ex_time, move_to_hdd) are set in the infor-
mation processing apparatus 2 in advance, for example. The
values may be factory set, or may be set by a user. The
thresholds may also be varied by the user later.

Next, referring to FIG. 8, a migration by the migrator 14 is
described.

FIG. 8 is a flow chart (Steps S 31 to S 34) illustrating a
migration of a segment by the migrator 14 in the tiered storage
system 1 as an example of an embodiment.

In Step S 31, the migrator 14 waits until a tiered migration
instruction is received from the work load analyzer 12.

In Step S 32, the migrator 14 determines whether a tiered
migration instruction is received from the work load analyzer
12.

If a tiered migration instruction is received (refer to the
YES route from Step S 32), in Step S 33, the migrator 14
converts the segment number specified the tiered migration
instruction received from the work load analyzer 12, to an
offset in the HDD 10 (LBA).

For example, for a 512-bytes/sector, the size of a single
segment is 1 GB, the migrator 14 calculates the offset by
1*1024*1024*1024/512.

US 9,348,516 B2

11

Next, in Step S 34, the migrator 14 notifies the tiering driver
5 of the offset related to the (LBA in the HDD 10) and the
migration direction (from the HDD 10 to the tiering SSD 9, or
from the tiering SSD 9 to the HDD 10). In response, the
tiering driver 5 migrates the segment based on the informa-
tion. The flow then returns to Step S 31.

If no tiered migration instruction has been received in Step
S32 (refer to the NO route from Step S 32), the migrator 14
returns to Step S 31 where it waits until a tiered migration
instruction is received.

Next, referring to FIG. 9, a migration of a segment by the
tiering driver 5 will be described.

FIG. 9 is a flow chart (Steps S 41 to S 45) illustrating a
migration of a segment by the tiering driver 5 in the tiered
storage system 41 as an example of an embodiment.

In Step S 41, the tiering driver 5 waits until a tiered migra-
tion instruction is received from the migrator 14.

In Step S 42, the tiering driver 5 determines whether a
tiered migration instruction is received from the migrator 4.

If a tiered migration instruction is received (refer to the
YES route from Step S 42), in Step S 43, the tiering driver 5
searches the tiering table 22 for any entry with a HDD offset
222 of NULL.

Next, in Step S 44, the tiering driver 5 registers, in the found
NULL entry, the HDD offset 222 information and status
(Moving (HDD—=SSD or SSD—HDD)), in the tiering table
22.

Finally in Step S 45, the tiering driver 5 instructs the tiering
SSD 9 and the cache 10 to migrate the segment. Specifically,
the IO mapper 21 in the tiering driver 5 instructs the cache
driver 6 and the disk driver 33 to migrate the segment. The
flow then returns to Step S 41.

Otherwise, if no tiered migration instruction has been
received in Step S 42 (refer to the NO route from Step S 42),
the tiering driver 5 returns to Step S 41 where it waits until a
tiered migration instruction is received.

Next, processing by the tiering driver 5 after a segment is
migrated will be described.

FIG. 10 is a flow chart (Steps S 51 to S 56) illustrating
processing by a tiering driver in the tiered storage system as
an example of an embodiment, after the segment is migrated;

In Step S 51, the tiering driver 5 waits until a migration of
a segment between the tiering SSD 9 and the cache 10 is
completed.

In Step S 52, the tiering driver 5 determines whether a
migration completed report is received.

If a migration completed report is received (refer to the
YES route from Step S 52), in Step S 53, the tiering driver 5
searches the tiering table 22 for any entry, the migration of
which has been completed.

Next, in Step S 54, the tiering driver 5 determines whether
the status of the found entry (if any) is “Moving
(HDD—SSD)”.

If the status is “Moving (HDD—SSD)” (refer to the YES
route from Step S 54), in Step S 55, the tiering driver 5
changes the status of that entry to “Allocated”. The flow then
returns to Step S 51.

Otherwise, if the status is not “Moving (HDD—SSD)”
(refer to the NO route from Step S 54), in Step S 56, the tiering
driver 5 changes the status of that entry to “Free” and sets a
value of NULL to the corresponding HDD offset 222. The
flow returns to Step S 51.

Otherwise, if no migration completed report has been
received in Step S52 (refer to the NO route from Steps S52),
the tiering driver 5 returns to Step S 51 where it waits until a
migration completed report is received.

10

15

20

25

30

35

40

45

50

55

60

65

12

Next, processing of a user 1O by the tiering driver 5 after a
segment is migrated will be described.

FIG. 11 is a flow chart (Steps S 61 to S 66) illustrating
processing of an user IP by a tiering driver in the tiered storage
system as an example of an embodiment, after the segment is
migrated;

In Step S 61, the tiering driver 5 waits until a user 1O is
received. The user 10 specifies the offset in the HDD 7 and
size of data requested in the user 1O, the type of the requested
10 (read or write), and the like.

In Step S 62, the tiering driver 5 determines whether a user
10O is received.

Ifa user 1O is received (refer to the YES route from Step S
62), in Step S 63, the tiering driver 5 checks all entries in the
tiering table 22. Specifically, the tiering driver 5 checks
whether there is any entry in the tiering table 22 having offsets
221 and 222 and a segments which are the same as the offset
and segment size specified in the user 1O. If any, the tiering
driver 5 then checks whether the status 223 of that entry is
“Allocated”.

If a matched entry is found and the status 223 of that entry
is “Allocated” (refer to the YES route from Step S 64), the data
requested in the user 1O is in the tiering SSD 9. Thus, in Step
S 65, the tiering driver 5 sends the user 10 to tiering SSD 9.
Specifically, the IO mapper 21 in the tiering driver 5 instructs
the disk driver 33 to handle the user 10. Thereafter, the flow
returns to Step S 61.

Otherwise, if no match is found, or if an entry is found but
its status 223 is not “Allocated” (refer to the NO route from
Step S 64), the data requested in the user 1O is in the cached
storage (HDD) 10. Therefore, in Step S 66, the tiering driver
5 sends the user 1O to the cached storage 10. Specifically, the
10 mapper 21 in the tiering driver 5 instructs the cache driver
6 to handle the user 10. The flow returns to Step S 61.

Otherwise, if no user 10 has been received in Step S62
(refer to the NO route from Step S 62), the tiering driver 5
returns to Step S 61 where it waits until a user IO is received.

(C) Advantageous Effects

In accordance with the technique in the present disclosure,
in the tiered storage system 1, the cost (time) for migrating a
nomadic work load spike to the SSD 9 exceeds its duration,
that nomadic work load spike is dynamically migrated to the
SSD 9.

Here, in the tiered storage system 1, since the SSD 9 and the
HDD 7 forms a tiered storage, no writeback of a dirty block
occurs for freeing a block in the SSD 9. In other words, once
data is staged to the SSD 9, no writeback load is generated. As
aresult, even if a nomadic work load spike emerges, the SSD
9 can be employed efficiently.

Experiments by the present inventors have revealed that the
information processing apparatus 2 can operate 17% faster
than a tiered storage controller including only a flush cache 1.

FIG. 12 compares the tiered storage system 1 as an
example of an embodiment against a conventional tiered stor-
age system.

The graph indicates results of the same benchmark of the
tiered storage system 1 (indicated by “NS-DST”), and a sys-
tem including only a Facebook flush cache (indicated by “fc
25 g”). The sizes of the SSDs in the two systems were 25 GB
for comparison.

In FIG. 12, the horizontal axis represents the elapse time
after the benchmark was started, while the vertical axis rep-
resents the 1O count per second (iops).

The data indicates that peak loads were greater and the
benchmark completed earlier in the tiered storage system 1.

US 9,348,516 B2

13

As described above, in the tiered storage system 1, since no
writeback of a dirty block occurs for freeing a block in the
SSD 9, nomadic work load spikes can be handled more effi-
ciently.

(D) Miscellaneous

Note that the present disclosure is not restricted to the
embodiments described above, and various modifications
may be made without departing from the spirit of the present
disclosure.

For example, although volumes are divided into 1-GB seg-
ments in an example of an embodiment described above, the
size of divided segments may be suitably modified.

Further, a first storage unit has been described as a HDD,
and a second storage unit faster than the first storage unit has
been described as an SSD. However, the storage units may be
any types of storage units, as long as the second storage unit
can operate faster than the first storage unit.

Further, although the OS 54 running on the information
processing apparatuses 2 is Linux in an example of an
embodiment described above, other UNIX® operating sys-
tems or other OSs in different architecture may also be used.
Ifa different OS is used, corresponding commands of that OS
are used. For example, if the OS 54 is Windows® Operating
System, the IO count can be collected using a corresponding
Windows command.

It is noted that the configurations and operations of the
tiering storage system 1 which have been described may be
omitted or may be combined as appropriate if necessary. In
other words, the components and functions described above
may be appropriately selected or combined together such that
the functions of the disclosed technique are achieved.

Further, in an example of an embodiment described above,
the order of the steps in the flows may be modified.

Further, the steps in flowcharts described above may be
combined in the tiering storage system 1.

In accordance with the present disclosure, in a storage
system, nomadic work load spikes can be handled more effi-
ciently.

All examples and conditional language provided herein are
intended for pedagogical purposes to aiding the reader in
understanding the invention and the concepts contributed by
the inventor to further the art, and are not to be construed as
limitations to such specifically recited examples and condi-
tions, nor does the organization of such examples in the
specification relate to a showing of the superiority and infe-
riority of the invention. Although one or more embodiment(s)
of the present invention have been described in detail, it
should be understood that the various changes, substitutions,
and alterations could be made hereto without departing from
the spirit and scope of the invention.

What is claimed is:

1. A storage controller that controls a first storage unit and
a second storage unit that has an access speed higher than an
access speed of the first storage unit, the storage controller
comprising:

a collector that collects load information about respective

loads in a plurality of areas in the first storage unit;

a selector that selects a candidate area in the first storage
unit which is to be migrated, based on the load informa-
tion collected by the collector; and

amigrator that migrates data in the selected candidate area,
to the second storage unit,

wherein the selector selects the candidate area based on an
average life expectancy, the average life expectancy
being calculated by subtracting an actual elapse time of

5

20

25

30

35

40

45

50

55

65

14
a load during which that load has lasted, in each of the
plurality of areas in the first storage unit, from an
expected duration time of that load during which that
load is expected to last.

2. The storage controller according to claim 1, wherein the
collector collects a count of input/output requests per unit
time as the load information.

3. The storage controller according to claim 1, wherein the
selector selects, as the candidate area, an area among the
plurality of areas in the first storage unit, the area being where
the average life expectancy exceeds a time for migrating the
load from the first storage unit to the second storage unit.

4. A storage system comprising:

a first storage unit;

a second storage unit that has an access speed higher than

an access speed of the first storage unit; and

a storage controller that collects load information about

respective loads in a plurality of areas in the first storage
unit, selects a candidate area in the first storage unit
which is to be migrated, based on the collected load
information, and migrates data in the selected candidate
area, to the second storage unit,

wherein the storage controller selects the candidate area

based on an average life expectancy, the average life
expectancy being calculated by subtracting an actual
elapse time of a load during which thatload has lasted, in
each of'the plurality of areas in the first storage unit, from
an expected duration time of that load during which that
load is expected to last.

5. The storage system according to claim 4, wherein the
storage controller collects a count of input/output requests per
unit time as the load information.

6. The storage system according to claim 4, wherein the
storage controller selects, as the candidate area, an area
among the plurality of areas in the first storage unit, the area
being where the average life expectancy exceeds a time for
migrating the load from the first storage unit to the second
storage unit.

7. The storage system according to claim 4, further com-
prising a third storage unit that has an access speed higher
than the access speed of the first storage unit,

wherein the third storage unit is controlled by a driver that

also controls the first storage unit.

8. A method of controlling a storage controller that controls
afirst storage unit and a second storage unit that has an access
speed higher than an access speed of the first storage unit, the
method comprising, by the storage controller:

collecting load information about respective loads in a

plurality of areas in the first storage unit;

selecting a candidate area in the first storage unit which is

to be migrated, based on the collected load information;
and

migrating data in the selected candidate area, to the second

storage unit,

wherein the selecting comprises selecting the candidate

area based on an average life expectancy, the average life
expectancy being calculated by subtracting an actual
elapse time of a load during which thatload has lasted, in
each of'the plurality of areas in the first storage unit, from
an expected duration time of that load during which that
load is expected to last.

9. The method according to claim 8, wherein the load
information is a count of input/output requests per unit time.

10. The method according to claim 8, wherein the selecting
comprises selecting, as the candidate area, an area among the
plurality of areas in the first storage unit, the area being where

US 9,348,516 B2

15

the average life expectancy exceeds a time for migrating the
load from the first storage unit to the second storage unit.

11. A computer readable recording medium having stored
therein, a control program for controlling a storage controller
that controls a first storage unit and a second storage unit that
has an access speed higher than an access speed of the first
storage unit, the control program causing the storage control-
ler to:

collect load information about respective loads in a plural-

ity of areas in the first storage unit;

select a candidate area in the first storage unit which is to be

migrated, based on the collected load information; and
migrate data in the selected candidate area, to the second
storage unit,

wherein the selecting comprises selecting the candidate

areabased on an average life expectancy, the average life
expectancy being calculated by subtracting an actual
elapse time of'a load during which thatload has lasted, in
each of'the plurality of areas in the first storage unit, from
an expected duration time of that load during which that
load is expected to last.

12. The computer readable recording medium according to
claim 11, wherein the load information is a count of input/
output requests per unit time.

13. The computer readable recording medium according to
claim 11, wherein the selecting comprises selecting, as the
candidate area, an area among the plurality of areas in the first
storage unit, the area being where the average life expectancy
exceeds a time for migrating the load from the first storage
unit to the second storage unit.

#* #* #* #* #*

10

15

20

25

30

16

